An Improved Clustering Method with Cluster Density Independence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved method for density-based clustering

Knowledge discovery in large multimedia databases which usually contain large amounts of noise and high-dimensional feature vectors is an increasingly important research issue. Density-based clustering is proved to be much more efficient when dealing with such databases. However, its clustering quality mainly depends on the parameter setting. For the adequate choice of the parameters to be pres...

متن کامل

An improved cluster model selection method for agglomerative hierarchical speaker clustering using incremental Gaussian mixture models

In this paper, we improve our previous cluster model selection method for agglomerative hierarchical speaker clustering (AHSC) based on incremental Gaussian mixture models (iGMMs). In the previous work, we measured the likelihood of all the data points in a given cluster for each mixture component of the GMM modeling the cluster. Then, we selected the N -best component Gaussians with the highes...

متن کامل

An improved density peaks-based clustering method for social circle discovery in social networks

With the development of Internet, social networks have become important platforms which allow users to follow streams of posts generated by their friends and acquaintances. Through mining a collection of nodes with similarities, community detection can make us understand the characteristics of complex network deeply. Therefore, community detection has attracted increasing attention in recent ye...

متن کامل

An Improved Initialization Method For Fuzzy C-Means Clustering Using Density Based Approach For Microarray Data

An improved initialization method for fuzzy cmeans (FCM) method is proposed which aims at solving the two important issues of clustering performance affected by initial cluster centers and number of clusters. A density based approach is needed to identify the closeness of the data points and to extract cluster center. DBSCAN approach defines ε–neighborhood of a point to determine the core objec...

متن کامل

An improved opposition-based Crow Search Algorithm for Data Clustering

Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korea Society of Computer and Information

سال: 2015

ISSN: 1598-849X

DOI: 10.9708/jksci.2015.20.12.015